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AN INEXPENSIVE SUPERSONIC WIND TUNNEL
FOR HEAT-TRANSFER MEASUREMENTS

Part I - Apparatus, Date, and Results for « Laminar Bounday Layer
Based on a Simple One-Dimensional Flow Model

By
) 1 = 2 3 4
Joseph kaye, Joseph H. Keenan, George A, Brown, and Robert I, Shoulberg.
SUMMARY
Reliable experimental data, obtained at relatively low cost, are
presented in the form of heat-transfer coefficients for air moving at

superson.c speeds in a round tube, These data are analyzed, interpreted,
and compared with available data in the literature, .

The experimental local heat-transfer coefficients are for laminar,
transitional, and turbulent boundary layers., The data for a laminrr
boundary layer are given in this paper, and the rerniaining data will be
given in a separate paper. The experimental data for 17 runs are given
here for Mach numbers at tube inlet of 2.8 and 3.0. The range of values
of diameter Reynolds numbcr covered is from 20,000 to 100,000 for these
laminar fiow tests, while the length Reynolds number extends to about
4,000,000, The computed quantities are obtained on the basis of a simple
one-dimensional flow model, but a subsequent paper will analyze the same

data in greater detail on the basis of a two-dimensional flow model,

1Associa~e Professor of Mechanical Engineering, Massachusetts Institute

of Technology.
2professor of Mechanical Engineering, Massachusetts Institute of Technology. %
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NOMENCLATURE

cross-sectional area, rD®/4

heat-transfer area. tDAL

specific heat at constant pressure

specific heat at constant voilume

discharge coefficient of nozzle

inside diameter of pipe

acceleration given to unit mass by unit force
flow per unit area, w/A

coefficient of heat transfer, /A" (tw -t
ratio of specific heats, c_/c

distance from end of curved contour of nouzle
Mach numbcer, V/ JEKRT

summation index, Eq. (8)

diameter Nusselt number, hD/ A,

length Nusselt number, hL/X

static pressure

rate of heat transfer

recovery factor, (tyy - ty)/(ty; - t.)
perfect-gas constant

diameter Reynolds number, DG/ug

length Reynolds number, LG/ug

Stanton number, h/c G

temperature, deg F

temperature, deg F abs

velocity

meass rate of flow

density

)

aw

- viscosity

thermal conductivity

Superscript * refers to throat of suparsonic nozzle witex~ M =1

Subscripts:
aw - adiabhatic wall conditions
J - station numbers
m - mezn stream conditions
o - hypothetical entrance plane of the tube, where the boundary
layer is of zero thickness
of - downstream stagnation conditions
oi - upstream stagnation conditinons
0] - local stagnation conditions at station j
r - atmospheric conditiors
s - isentropic cunditions
W - wall conugitions
0 - free stream conditions for flat-plate flow
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INTRODUCTION

A wind tunnel is usually considered to te a device in which models
may be inserted and tested under controlled conditions., Wind tunnels have
been also used, however, to study basic phenomena in fluid mechanics,
such as boundary-layer mechanics, turbulence, stability of the iaminar
boundary layer, interaction of shock waves and boundary layers, and, in
more recent years, heat-transfer phenomena in supersonic flow. Most
superscnic wind tunnels which are large encugh to insert models of reason-
ablc size are expensive to build and tc cperate, and also expensive when
used tc mnsasure heat-transfer data for supersonic flow, Supersonic flow
established under controlled conditions in a small round tube, cne-half
inch in diameter can be used to mcasure local heat-transfer coefficienis.
The corrcsponding apparatus, which is described herein, may be considered
to be an example of an inexpensive supersonic wind tunnel, in that it is
both relatively cheap to design and coinstruct, and also, relatively low in
operational costs.

A recent survey (1)* has shown the great ..eed for reliable heat-
.ransfer data for supersonic flow in view of the small amount of such data
published during the years from 1948 to 1953, For this reason a fairly
detailed account of the results obtained in an investigation of heat-transfer
coefficients for superscaic {low of air in a round tube is to be presented in
2 sericz ~f papers, The first paper, which is the present one, consists of
a description of the two sets of apparatus used, the original data, and the
calculated results for a lam.inar boundary layer based on a simple one-
dirmensional flow model, The second paper will present the calculated
results for a laminar boundary layer based on a two-dimensional flow model
for the entrance region of a tube. The third paper will present the original
data and the calculated resuits for a transitional and for a turbulent boundary
layer based on a simple one-dimensional flow model.

Thke present investigation of heat-transfer coefficients for super-
sonic flow of air in a round tube was started some seven years ago under
the sponsorship of the Office of Naval Research. Preliminary data and
resuiis were obtained several years ago with the first apparatus, described
herein as test combination C. Similar results were not then available in
the literature for comparison., The posgeibility of systematic errors in
the data and the lack of knowledge of the type of boundary layer which
existed in the supersocnic flow of air in the tube were two main reasons
for designing, building, and testing a new apparatus to get more reliable
heat-transfer coefficients for supersonic flow,

*Numbers in parentheses refer to the Ribliography at the zand of the prper.
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In the last few years the results obtained for superscnic flow of
air in a round itube, with and without heat transier to the air stream,
have been piaced on a {irm foundaticn as indicated by the follcwing

evidence:

1. The experimental data obtained by different teams of students
working with different test combinations, for both adiabatic and diabatic
flow, have shown the absence of significant systematic errors.

2. The nature of the bcundary layer present in the tube flow has
been conclusively demonstrated by means of accurately measured velocity
profiles (2,3).

3. The accurately measured velocity profiles for supersonic flow in
the tube have also demonstrated the basic soundness of the two-dimensional

~ = Y

flow model used to interpret the data.

4. ‘Theoretical solutions (4) have been obtained for the system of
partial differential equations of energy, momentum, and continuity for the
case of supersonic flow of air in a tube in the entrance region. These solu-
tionng describe the behaviour of sup¢rsonic flow in a tube wiih a laminar
boundary layer developing from the entrance plane of the tube.

METHODS OF TESTING

The experimental program described here has consisted of two
parts. In the first part, a well-insulated round tube was used to measure
values of the local adiabatic wall temperature and local static pressure
of a supersonic stream of air. The results of these tests, with a complete
description cf the apparatus, are given in references (5) and (6). Ir ordexr
to minimize the amount of repetition, the reader is referred to these two
papers for many details not given in this paper. In the second part of the
program, two different test combinations were us2d in which steam was
condensed outside a round brass tube in order to measure the local co-
efficient of heat transfer to a supersonic siream of aii fiowing inside the
tube.

The general preparation of the air flow ancd the method of drying
the air stream are given in detail in reterence (5). These are the same
foxr hoth paris of the program. The schematic layout of the entire flow
system is shown in Fig. 1. The purpose of the major changes made for the
tests with diabatic flow was to insure that zlmost saturated or slightly
superheated steam entered the outer steam chest of the apparatus and to
minimize the heat losses {rom the apparatus to the surroundings.
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A major difference between tests for adiabatic and diabatic flow
was the length of time required to bring the large mass of heat-transfer
apparatus up to a fixed temperature corresponding to that cf the condensing
steam. This transieni heating process was carefully cbserved and recorded
in the diabatic tests until ¢ steady-state condition was obtained. Heat-
transfer measurements were made unily for the steady state. During the
large time interval required for both the transient process and the meas-
urevnrents, the conditions in: the steam main varied only slowly. Control
devices were found necessary to superheat or desuperheat the sieam only
slightly inorder to maintain constant the state of the steam fed to the steam
chest ¢f the apparatus. They are indicatzd in the scnematic layout of
Fig. 1. The measured superheat was found to be about 0.5° F on the
average.

EXPERIMENTAL APPARATUS
Some salient features of the two tesi combinations of heai-transfer
apparatus are described in Table 1. The length-diameter ratio in Table 1
is based on the distance from the end of the curved contour of the super-
sonic nozzle to the exit plane cof the test section.

TABLE 1

TEST COMBINATIONS OF HEAT-TRANSFER APPARATUS

SYMBOL NOZZLE TEST SECTION L/D Mo
C Brass Brass 31.8 3.0
D Stainless steel Brass 49.8 2.8

The no::zles used to produce supersonic flow in test combinations
C and D were different in design and in final contour, Details of design
and of consiruvction of these two nozzles are shown in reference (5). For
purposes of illustration, the rough dimensions and shapes of these two
nozzles are shown in Fig, 2, In the brass nozzle of test cembination C, no
means of measuring the temperature gradient along the axial length was
available, whereas two therimocouples were installed in the stainless-steel
nozzle to determine the axial temperature gradients for test combination D,

Design Considerations for Test Sections

The first test section, used in test combination C was designed to
produce a2 small thermal resistance for radial heat flow through the tube
wall in comparison with the thermal resistance being measured, namely,
that from ihe wall to the air stream in tne tube. Brass was therefore
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selected for inic tube material, The temperature of the tube was maintained
constant over its entire length by surrounding it with condensing steam.

The experience gained after operation of test combination C for
about two years resulted in the following additional design reyui: cwmeinis
for test combination D:

1. The joint between the nozzle and collar, and that between the
collar and test section should be made as nearly perfect as possible. A
misfit in excess of 0.0002 in. in the diameter of 0.% in. is undesirable.

2, The axial heat flow from the hot test sectiion to the cooler nozzie
should e reduced to a minimum. This objective was achieved in test sec-
tion D by use of a nozzle and a collar made of stainless steel which has a
considerably lower thermal conductivity than that of brass.

3. The no-load or blank-run condensation rale, which is determined
by flow of steam into the steam chest for zero flow of air in the test section
and which is an indication of the total amount of u:ndesired heat flow from
the sieam to the surroundings, should be minimized, especially when a
laminar boundary layer is established in the test section.

4. The state of the steam entering the steam chest must be care-
fully controllied to be slightly superheated, and the steam flow distribution
into and within the steam chest must be as nearly uniform as practical,

Test Apparatus

In order to minimize repetition, the general common features of
test combinations C and M will be described first. The dried air stream
leaves the upstream stagnation tavk, passes through the supersoniz xuszle
inte the half-inch test secrion of brass, and then passes out througi: the
downstream sfagnation tank into the ejector to the ctmosph_r .. Zicem
drawn from the supply main passes through a trap, a pressure r«gulator,
a combination of a desuperheater and a superheater with electrical heat
input, enters the steam chest thircugh the inlet pipe, and is distributed
around the test secuion, The steam is prevented from flowing directly to
the outside of the test section by means of a brass semicylindrical
umbrella which covers the entire length of the tube. This umbrella serves
to prevent any condensate uther than ihiat formed on the tube from entering
the compairiments around the test saction. It serves 21so as a radiation
shield,

The outside of the test section is partly surrounded by a sermni-
cy.indrical hruss trough, open at the top., This trough is subdivided into
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compartments by means of thin bracs | wriiticns set perpendicular to the
tube axis at definite intervals. The sieam in contact with the tube wall

in a given compartment condenses at @ rate proportional to the rate of
heat tranr‘er to the z2ir flowing inside the tube. This condensate is caught
in the trough and drains from the compartment thirough a short piece of
neoprene tubing into a steam-jacketed, calibrated, and graduated glass
collecting tube, The glass collecting tubes are shielded from the atmos-
phere by highly reflective aluminum foil.

The entire test section, together with nozzle and stagnaticn tarks,
is covered with a large thickness of insulating felt and then with aluminum
foil to reduce extraneous heat flows., The total thermal capacity of this
insulation, the test sectior, and the surrounding steam chest is quite large,
so that a large amount of steam condenses in the transient warm-up process
before the steady-state measurements of heat transfer are made. Drains
for removing the condensate and atmospheric vents to speed up preliminary
heating were provided in both test combinations.

The method of construction of the test section was almost tF. same
for the two test combinations. An axial hole was drilled i» = =c!:d brass
rod and then the numecrous holes for pressure taps were drilled throngh the
wall of the tube. The inside surface of the tube was prepared by successive
polishing operations alternating with successive cleanings of the pressure -
tzp holes, until a high polish was present ont the inside surface with no
detectable burrs at the pressure taps. The angular position of the pressure-
tap holes was rotated from the entrance of the tube to the exit.

The steam chesi for tcci combination C was almost square in cross
section and was made from welded plates, except for two sides, Tiic chesi
for test combination D was made from a circular casting, with two halves
joined by bolts at a gasket, in order to be able to increase the working
pressure of the steam in the chest.

The measurements made for both test combinaticns C and D included
the upstiream stagunation temperature and pressure, the tube-wall tempera-
ture alung its entire length, the local static pressure of the air flow, the
local rate of collection of condensate from each compartment, the down-
stream stapnation temperature and pressure, the nc-load condensate rate
for zero air flow, and the pressure and temperature of the steam at several
locations in the steam jacket,

Test Combination C

The details cf test i;ombination C are shown in Fig, 3. Photcgraphs
of this apparatus, before and after assembly, are shown in Figs, 4 and S,
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respectively. The compariments of the condensate-collecting treugh are
clearly visible in Fig. 4. The orotecting umbrella is clearly visible in
Fig. 5, which also shows the pressure connections, the condensaie tubing,
and steam-jacketed glass collecting t:bes, The upstream stagnation tank
is to the left in Fig. 5. The important dimensions of test combination C
are summarized in Appendix A,

When test combination C was first assembled, a hard rubber collar
was used between the nozzle and the test section. The first twelve rimns
(K-1 through K-12) yielded pressure distributions which were not as smooth
as those obtained for the measurements with adiabatic flow. The nozzle and
collar were taken apart and it was found that they were misaligned by about
0.001 in. A new collar was prepared and the joint hetween nozzle and collar
and that between coilar and test section were carefully polished and aligned.
The remaining heat-transfer runs made with test combination C were found
to yield smooth pressure disiribuiions, indicating the achievement of smooth
flow at the entrance of the test section.

Test Combination D

The details of test combination D are shown in Fig, 6. Photographs
of this apparatus, before and after assembly, are shown in Figs, 7 and 8,
respectively. Fig. 7 shows clearly the stainless-steel supersonic nozzle,
the collar, the test section with the surrounding compartments, the large
castings for the steam chest, and, finally, the downstream s* 3nation tank.
Fig. 8 shows the connections for the pressure leads, for tht .ermocouplec

in the test section, and for the condensate collecting tubes.

Test combination D differed irom C mainly in the use of a longer
test section. The length-diameter ratio for D is 49.8 compared to 31.8 for
C. This longer length of D was used purposely to check the prediction,
based on the results of adiabatic flow interpreted by means of the two-
dimensional flow model, that a much longer laminar boundary layer could
be maintained, even with heat transfer to the air stream, than was used in
test combination C. The results given here for test combination D confirin
this prediction quite well.

Test combination D has also been used to measure the velocity
profiles for supersonic flow in the test section, with and without heat trans-
fer to ihie air stiream. The preliminary results obtained from velocity
profile measurements, discussed in references (2) and (3), confirm that
either a laminar boundary laycr can exist for the entire tube length, or
that transition of this boundary layer to 2 turbulent one may occur befcre
tube: exit. Thus the interpretation of all previous,and present data oviaired
with this type of apparatus is placed on a secure foundation.

Ay . —_— -
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EXPERIMENTAL RESULTS

Appendix A contains the measurements for flow with heat transfer
obtained with test combinations C and D, together with the calculated
resulis based on a simple one-dimensional flow model, In order to keep
the size of this paper within reason, only those data which correspond
mainly to a laminar boundary layer existing over most of the tube length
are given here; the remainiug data, corresponding to a boundary layer in
transition and to a turbulieni boundary layer will be given in similar de-
tail in a later paper of this series. Appendix B contains the analysis for
the simple one-dimensional flow model, the detailed method of computation,
and a sampie calculation.

The number of runs made with test combinations C and D, the

ranges of Reynolds numbers covered and the prevailing type of boundary
layer present in the tube, are given in Table 2,

TABLE 2

SUMMARY OF HEAT-TRANSFER TESTS

TEST TYPE OF NO, OF ReD Re L
COMBINATICN BOUNDARY RUNS
LAYER MIN. MAX, MAX,
C Laminar 4 82,000 96,000 2,270,000

{ Turbulent

C " 19 43,652 389,000 8,560,000
Transitional

D Laminar i3 22,000 92,000 3,590,000

D { Tupbulent 6 20,000 492,000 12,000,000
Transitional ’

The diameter Reynolds number is based on the tube diameter and on the mean

streaim properties measured or computed at the first station — for C the
first station is 1.66 in, from the exit plane of the nozzle whereas for D it
is 1.19 in. from the exit plane of the nozzle. Hence the inlet diameter
Reynoids numbers for C do not correspond exactly to those for D. The
length Reynolds number is based on the distance from the end of the curved
contour of each nozzle and on the mean stream properties at that distance.
Hence the values of Rey, for € and D are less arbitrary than those for
Rep and more nearly comparable, especially at a considercble distance
downstream from the entrance plane of the tube.

Lo




Laminar Boundary Layer

The data presented here for a lamninar boundary layer in a round
tube were first interpreted on the basis of a simple one-dimensional flow
model. This model ignores completely the growth of the laminar boundary
layer in the tube and also the fact that this type of supersonic flow 18 mainly
one of "entrance flow" with insufficient flow length to produce a ''fully-
developed" flow. Moreover, previous work (5) on adiabatic supersonic fiow
in a tube has shown that this model is inadquate for calculation of friction
coefficients and recovery factors for a laminar boundary layer. In the
present paper this simple model is still used since it permits one to get
a quick reduction of the original data to useful form, but the computed
quantities are interpreted, related, and compared with essentially the cor-
rect phenomenological picture of the growth of a laminar boundary lay«r
either on a flat plate or in a tube.

For flow over a flat plate, a laminar boundary layer begine to grow
from the leading edge until it undergoes a transition to become a turbulent
boundary layer. The transition precess occurs in a finite length of flow.
The turbulent boundary layer continues to grow in thickness in the direction
of flew. This simple picture of plate flow can be used with precision to
develop a two-dimensicnal flow model for supersonic flow in a tube (6).

The detaiis of this two-dimensional flow model for tube ilow witl. heat
transfer will be given in a later publication. The results cbhtained with
ihiis more exact model justify the rnethod of :omparison of tube flow with
plate flow which is used in the present paper.

The results computed on the basis of the one-dimensional flow model
will also be compared with the theoretical results for tube flow obtained
recently in this program (7). These results were obtaired by investigation
of the basic partial-differential equations of energy, momentum, and
continuity for a devcloping laminar boundary layer adjacent te an isentropic
core in the central pertion of the tube. After transformations, these equa-
tions were solved with the aid of the M.I.T. Differential Analyzer. The
solutions were obiained on the basis of the simplifying assumption of con-
stant fiuid viscosity and thermal conductivity. The corresponding cal-
culated results will be referred to on the charts to iollow as ''tube flow,
constant 4 and A."

The experimental results for tuhe flow with a laminar boundary layer,
covering the range of inlet diameter Reynolds number from about 22,000 to
100,000, are presented in six charts, Figs. 9 to 14, Each ciiari shows the
measured values of the modified pressure ratio, the wall temperature of
the brass test section, the heat flux, and finally the computed values of the
Stanton number. Each of these quantities is plotted against the length
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Reynolds number. All the data for predominantly laminar boundary layers
which were obtained with test combinations C and D are given on these
six charts; the remaining data for a predominantly transitional or turbuient
boundary layer are given in a later paper and contain only a small amcunt
of information on the laminar boundary layer. Six charts were found to be
necessary to present the data in sufficient detail because they were found

to be quite sensitive to small changes in values cf the inlet diameter
eynolds number.

o}

The ratio of measured local static pressure to stagnation pressure
is given in Figs. § to i4 in terms of a diiaensionless modified pressure
ratio mainly to place results from test combinations C and P and runs
made with different stagnation temperatures on a comparable basis. The
local wall temperature could have been presented in terms of the ratiz of
iocal wall temperature to stagnation temperature but the actual variations
are tco small to warrant use of this ratio. The local heat flux is, 1n
reality, an average value of heat flux over the short length of one of the
condensate collecting compartments,

Fig. 9 presents results {or the lowest value of the diameter Reynolds
number atiaiicd in ihese heat-transfer tests, namely, 22,000, Both runs
shown in Fjg. 9 were made wiih test combination I} and illustrate the degree
of reproducibility of the data for static pressure, wall temperature, and
heat flux along the length of the tcst section, The pressure fluctuations
shown in Fig. 9 are not uncommon in this type of experiment. The wall
temperature is remarkably constant along the length, with an average de-
viation from a mean value of lcse than a fraction of one degree., The heat
flux appears to be smocth in the entrance portion of the tube which cor-
resgponds to the laminar boundary layer, and then appears to fluctuate about
a mean value of 235 Btu/(hr ft2).

Fig. 9 compares the ccmputed Stanton number for tube flow with the
values predicted for plate flow and for tube flow. The predicted Stanton
number for plate flow with zero pressure gradient is taken from Van Driest
(8) for a laminar boundary layei with variable viscosity and thermal con-
ductivity; the comparison is made for a free-stream Mach number < 2.8
and a ratio of wall temperature to free-stream temperature of 3.0. The
predicted Stanton nun:ber for tube flow is taken from the theoretical solu-
tion given by Toong (7) for a laminar boundary layer with constant viscosity
and thermal conductivity. This solution shows that the Stanton number de-
pends boili on the length Reynolds number and the diameter Reynolds number
so that two lines are showa to cover the range of diameter Reynolds number
employed in the tests. For the entrance region of the tube, whcre a
laminar boundary layer is forming, the experimental tube results are in

good agreement with the theoretical values for tube flow. The experimentai
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data lie below the theoretical values for plate filow prcbably because of
the precence of a large adverse pressure gradient in the tube flow.

Fig. 10 shows the resulis for a diaraeter Reynolds number of 32,0006 for
test combinaticn: D. The pressure data are smoother and more reproducitle
than those in Fig. 9, and the heat-fiux data cover a much larger range of
values than those in Fig. 8. The heat-flux data and the Stanton numbera hath
indicate a sharp rise in value near tne exit of the test section; this sharp
rise is one of the {irst signs noted of transition from a laminar to a turbulent
boundary layer in the tube. Ar in the previous case, where a laminar boundary

ayer is present, the values of the Stanton number compare well with the
theoretical predictions for tube flow but lie below those for plate flow with
zero pressure gradient,

Fig. 11 shows the results for 3 runs with test combination D and
cne run for test combination C. The sensitivity of the data to small changes
in diameter Reynolds number is evident in Fig 11, where the local heat-

Runs B-2 and B-4 even though the dxameter Reynolds number is increased
only from 45,00C to 51,000, The modified pressure ratic for Run ¥-20 is
slightly smaller than those for the three runs with test combination D, but
the same slow rise in pressure with a maximum value attained near the
dewnstream end of the tube is evident is all four runs. Careful study was
made of the conditions at this value of the diameter Reynolds number be-
cause preliminary data for adiabatic flow had indicated that for this value

Substantiation of these prehmmary data is se2n in runs B-2 and B 4 where
a laminar boundary layer was found to exist up to station 17, with a value
of length-diameter ratio of 45.3. The agreemert of ithe measured Stanton
numbers {or tube flow with the theoretical values for plaie flow and tube
flow is excellent on the basis of the simple one-dimensional flow modei,
S1mxlaL 2xcellent agrecment was found in reference (5) for the local apparent
S0 e coefficients of adiabatic tube flow at a diameater Reynolds number
of 000. Fig. 11 aisc indicates that the start of the transition from a
laminar to a turbulent boundary layer occurs at a value of the length
Reynolds number of 900,000 for Run K-20 and about 1,300,000 for the other
thrze runs. These values are in good agreement with those for transiticn
flat plate.

In Fig. 9 the value of the Stanton number begins to level off at a
length Reynolds number cof 200,000, and fluctuations about a constant value
extend to a Reynolds number of 800,000. In Fig. 10 a similar behavior is
noted between Reynolds numbers of 300,000 and 900,000, and in Fig. 11
betweeii 500,000 and 1,000,000, A possible explanation of this levelling off
and fluctuation of values of the Stanton number could be the phenomenon of
separation of the laminar boundary layer under the influence of an adwerse
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pressure gracdient which is present over a long length of tube flow., The
fluctuations could be partially explained in terms cf reattachment of the
separatcd laminar boundary layer. Further work is needed to test this
£xplanation,

Fig. 12 presents the data for a diamcter Reynolds number of about
70,000 for 2 runs with test combination D and one run for test combination
C. The excellent agreement of the values of the modified pressure ratio
and of the neat flux for the laminar boundary layer for the two completely
different test combinations indicates the abbsence of appreciable systematic
errors. The second striking feature of the data in Fig. 12 is the steep rise in
the heat flux, and likewise in the Stanton number, when the laminar boundary
layer undergoes a transition to a turbulent one, The clder and shorter test
combination C was not long enough to show this feature. The steep rise in
heat flux cbserved here is an excellent indicator of trunsition. The static
pressuve, and the wall temperature on the other hand, changed but slightly
over the entire eight-diameters of length of this transition process. The
values oi the measured Stanton nuinbers in Fig. 12 are in excellent agree-
ment with those predicted for piate flow, and are larger than those for tube
flow with a 'aminar boundary layer. The better agreemeut with predicted
values for plate flow may also be due to the smaller pressure gradient
present in the data in Fig. 12 than in Figs. 8, 10, and 11.

Fig. 13 shows the data for 2 diameter Reynolds number of about
80,000 for Runs B-1 and B-9. The results are similar to those noted for
Fig. 12, especially with respect to the steep slope of the curve for heat
flux during transition. It should be noted that as the value of the diameter
Reynolds number is increased irom Fig, 9 on to Fig., 14, the value c¢f the
iength Reynclds number at transition, computed on the basis of the one -
dimensional flow model gradually increased from about 900,000 to about
2,200,000, A zirnilar shift was found in the transition for adiabatic tube
flow, The agreement between measured values of the Stanton number
and those predicted for plate flow is excellent for this type of measurement
in view of published data,

Fig. 14 shows the data for Runs B-7, B-16, K-19, and K-23 for the
last and largesi value of the diameter Reynolds num c¢r, 90,000, which was
chosen to demonstrate the data for a predominamntly laminar boundary layer,
The agreement between the data for the two different test combinations is
again excellent. The steep slopes of the curves for heat flux ard for Stanton
number are again emphasized in the data taken with the longer test combina-
tion D. Figs. 13 and 14 indicate smaller values of the adverse pressure
gradient than do the preceding figures. For these four runs, the agreement
between measured Stanton numbers and plate-flow values for zero pressure
gradient is excellent,

e e g e - e e i
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One-Dimensional Flow Model

Previous work {5, 6} has shcwn that the vne-dimensional flow model,
1-DFM, used for ithe present heat-transfer calculations is nct fully adequate
for calculation or understanding of adiabatic supersonic flow in the entrance
region of a tube. The experimental results given in Figs. 9 to 14, additional
data on measured velocity profiles for supersonic tube flow (2, 3}, and,
finally, unpublished data on measured temperature protiies for supersonic
tube flow ail show that the simple 1-DFM is not fully adequate to explain
the heat-transfer data for supersonic tube flow.

In piace of wising tube-type flow, as the 1-DFM would suggest, the
data have beern treated here as though the laminar boundary layer develops
in the tube in the same way as a laminar boundary layer develops on a flat
plate. A somewhat more complicated flow model, the two-dimensional flow
model, 2-DFM, will be used in a subsequent paper to give support to this
phenomenclogical explanation of supersonic tube flow in the cntrance region,
In addition, this 2-DFM zpplicd to heat-transfer data for tube flow will
indicate the means of transforming the tube data for quantitativc comparison with
ticat-transfer data for plate flow. Finally this 2-DFM will be used {o show the
means of combining all the data for a laminar boundary layer in tube flow so
as to reduce the scattering inherent in the measurement of ivcal values of the
heat flux over short increments of tube length.

CCONCLUSIONS

Reliable data on heat-transier coefficients to air flowing at super-
sonic velocities in a round tube are presented here for ihe case of a laminu~
boundary layer. The agreement found between measurements made with
completely independent testi combinations by different groups of students pro-
vides assurance that no significant systematic e-rors exist,

The data for tube flow are cornputed on the basis of a simple one-
dirmensional flow model. 5Since ‘his model is not fully adequaie to explain or
interpret the heat-transfer data {or supersonic tube flow, thesc data are inter-
preted in terms of a laminar boundary layer which begins to grow at tube
entrance. The calculated values are compared with the theoretical nradictions
for a laminar beundary layer developing cver a flat plate with zero pressure
gradient and with the theoretical predictions for tube flow based on constant
viscosity and constant thermal conductivity.

The measured Stantoun numbers agree best with the theoretical values

for tube flow and deviate most from the values for plate flow for the lowest
value of the diameter Reynolds number attained here, namely, 22,000, On the
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other hand, the reverse is true at the highest value of the diameier Reynolds
number, namely, 90,000, The agreement between measured Stanton numbers
and flat-plate values improves as the adverse pressure gradient in the tube
decreases, inat is, as the value of the diameter Reynolds number increases
from 20,060 io §0,000; the agreement at the highest vilues of the diameter
Reynolds number is excellent for this type of measurement,

The transition from a laminar to a turbulent boundary layer for
supersonic flow in a tube, with heat transfer is most easily detectable by
the sudden sharp rise of the value of heat flux at the transition region, even
though hardly any change in static prescsure is evident. The numcrical value
of the length Reynolds number at incepticn cf transition is in excellent agree-
ment with similar published data for a laminar boundary layer on a flat plate.

The data indicale that a ‘airl ly great length of supersonic flow can be
established in a tube with a lammdr boundary layer over mosi of this iength,
Hence this type of apparatus represenis an inexpensive supersonic wind
tunnel for adiabatic and diabatic flow,

The one-<imensional flow model was used in this paper to reduce the
experimental values to computed quantities in a simple and quick way. The
computed quantities, however, are interpreted, related, znd compared with
essentially the correct phenomenological picture of the growth of a laminar
boundary iayer in a tube., The same original data will be treated in a later
paper by a more detailed analysis based on a twe-dimensional flow model,
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APFPENDIX A
MEASUREMENTS AND CALCULATED RESULTS
This appendix contains the detailed dimensions of the twou test com-
binations, the original measurements {or diabatic flow, and the calculated
results based on the simple one-dimensional flow model, The values of the

discharge coefficients for the supersonic nozzles and the properties of air
are given in reference (5),

Details of Nozzles and Test Sections

The values of the nozzle throat diameter D*, and the test section
diameter D, are given in Table 3 for the two test combinations,

TABLE 3
DIAMETERS OF NOZZLES AND TEST SECTIONS

TEST COMBINATION NOZZLE TEST SECTION D* (in.} D (in.)

C Brass Rrasa 00,2416 0,502
Stainl

D ainiess Brass 0.2685  0.5018
Steel

The length-diameter ratios of the two test sections are given in
Table 4. The length is the distance from the end of the curved contour
in the supersonic nozzle to the location of the pressure tap of the station
in question,

The value of the iocal heat-transfer area in any collecting conipart-
ment is found by multiplying its length by the inner circumference of the
test section., For test combination C the length of each colilecting compart-
ment for stations 1 through 14 is 1 in,, but for the first ccllecting compart-
ment is 0,656 in, (see Fig. 3). In test combination D the length of the
compartments for stations 3 and 18 is 0.75 in., for stations 4 through 9

is 1.00 in,, and for stations 10 through 17 is 2.C0 in. (see Fig, 6).

Data and Calculatied Results

The original data and calculated results for seventeen runs corres-
ponding to flow with a laminar boundary layer are summarized in Table 5.
Thirteen runs were mmade with combination D and four with combination C.
The data include measured values of the stagnation temperature, stagnation

A S e

———— -



16

0 Eaﬁ@&ﬁﬁmm wc.w¢
ML EEY off ye oy
., Yruaananoyg ce'I¥
., Husaamy LELE
N yyromy, geree
s yuaaeryg 6€°62
" yjusy, 185
a qIuTN ¥ iG
" ywsg 1 2
i Yjuaaag 28 A
" yixig LA
i ytg aF' 01
. y3Inog oLy'8
i pPITYY, LLE9
. puoosg 5SVY
juswiaedwo) §8I19 L9€'2
$s0g UOTDAG ISaL, 619°1
Je110D 8981'0
dV1 FYNSSTYd 0 NOLLVDOT Td/T
& i
d
d aNv J

SNOILVNIFIWOO I1SdL

¥ ITdVL

JO SHNCISNIWIA

n qiusayig 32762

a Yluedlanoyg 0% LC

i UIuLldutyg, 12°6¢

4 Uuems, (A AR%S

5 Yiuaa3Tg £€¢°1¢

- jiue I, ¥2°61

0 yur ¥2 L1

. yst3 GZ'S1

o Yiuaacg 9¢°¢1

i XS LZ°11

- BEILC €Le’6

" yijanoy €82°L

o pPITYL, 162°6

juaurj.seduro) puodag 662°¢

dvJL FHNSSHYd 40 NOILVOOT Q\Mw
= &

0

17}

ML Ly

w0 -

- 0N Y

"ON m
NOILVIS ;




s Tt

<y

S S IR MR T

.

‘.
i
I3

(.

17

pressure, local wall temperature, local static pressure, and local gross
and local 1io-load heat-iransfer rates, The calculated resulis are based
on the simple one-dimensicnal flow :ncdel.

Due to experimental difficulties during certain runs, it was occasion-
ally necessary to evaluate certain quantities, such as wall temperature,
wall pressure, local heat-transfer rate, by linear interpclation or extra-
polation of thec remaining data, Such quantities are placed in parentheses
in Table 5,

The no-load heat-iransfer rates were not determined after every run,
For those runs where such data were available, thcy were averaged and the
avera~e values were used also for the runs for which such measurements
were ornitted.

inspection of Table 5 shows that heat-transfer parameters are
omitted for test combination D at stations 3 and 18. Actually, the net heat-
transfer rate messured at station 3 involves the additional heat transfer to
the air stream which occurs in the nozzle, collar, and a 0.50-inch length
of test section upstream of station 3. Similarly at statien 18 the net heat-
transfer rate involves additional heat transfer to the air stream in a 0.50-
inch length of test secticn downsirearn of station 18 and through the down-
stream boss and end plate to the 2ir in the downstream siagnation tank,
The data at these iwo stations were omitted since the; cannot be corrected
for these additional heat iransfers. ‘i'he analytical results of Chapman and
Rubesin (9), together with measured temperature distributions in the super-
sonic nozzle, were used tc check the measured heat-transfer rates at station
3. The agreement was witiain ihe experimental erior of the measured heat-

7§ T ey
transfer rates,

In test combination C, the condensate data at the first compartment,
q,. Wwere not recorded. The amncuni of heat transfer t{o the air stream up-
stream of station 1 was estimatad by linear extrapoiation of the data from
atations 1 and 2.
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APPENDIX B
ANALYSIS AND SAMPLE CALCULATION
Analysis
Consider the steady flow of air from a stagnation state through a

supersonic nozzle and then through a round tube of ~onstant cross-sectional
a in which heat is udded to the air stream. The [ollowing assumptions

70
a

£
(¢}

re made in the analysis:

o8}

1. The flow is one-dimensional, i.e. all fluid properties are uniform
at any cross section,

2. Air is s perfcct gas with a constant value of the ratio of specific
heats (k = 1.40) nver the range of temperawre undec consideration,

3. Heat added to the air stream is measured by the amount of
condensate collected in the various compartments,
ations hold at each section in the tube:

=

Thoe fallawin
2T 184 0WAT

Continuity: w = pVA (1)

Equation of State: p = pRT (2)
2

Energy: CpTo; = cpT + V7 /2g {3)

Definition: M2 = V&/gkRT (4)

The discharge coefficient of the supersonic nozzle is defined by

c = (w/A%)/(w]A%) (5)
w S

For isentropic flow to the nczzle throat

k k+1 p* X
G¥ = (w/A¥)_= /gf,) —5 "It"" (6)
Al "\ ol
K
1 | 19
, k+1 * =
p*/p = ( 5 ) (7)

For a control volume which encloses the fluid between the upstream
stagnation slate and the section at the center of the measuring compartient
of station j, the energy equation becomes fer test combination

S P e o
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n=j-1
J
2 4 - =c¢ (T - T (8:
qj/z. + nz()q (P( 53 01) ()
For test combination D the energy equation is:
/2 n=j-1 B ( T ) (8h)
qj 2+ < .’qn = (r) 0j = Bt LoD
ni=o
Combining Equations (1) through (7),
k41
2(k - 1)
: === [ {M, k)
AR 1 - -, Je ) .
M\[l + h_)—-mz ! )

The right-hand side of Fquation 3) is a unique function of the JMach number
if k is constant. This function is tabulated under the heading pA/p A* in
Table 30 of reference (10). The symbol P, of reference (10} is 1dentical
with p . used here. ‘
ol

All the quantities on the left-hand side of Equaticn (2} are measdared
except ¢, and To-. Equation (8) permits the calculation of Tg; from
measured data, ’llhe plot of o versus (Re*b)s, given in referénce (5),
where

5 3 < ) Sy (10}
(ReD)S Gs D¥ju (10}
was used. Note that G} can be found from kquations (6)and {8) irom mcasured
data and that u* can be found from the temuerature,
T* = 0.83333T . =0,83333{t + 459.69). (11)
oi o1

With the Mach number known, the mean-stream temperature can be
found from
k ~1 2

T /T o=1/0 + M7 (12)
m’ ~0j ) 2 '

which is tabulated in Tahle 30 of reference (10) as T/T . The following
equations were used to complete the calculiations: -

P A
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G =c G¥ AT/A (13)
w S

Hc-D = GD/um {14)

Re z GL/; = Re_(L/D 5)
L /,Jm D( / ) (1 M
f /AT - T ) (15)

: w aw
Nu - hD/x (17)
L

Nu zhL/x = Nu (L/D 18
1 / - D( /D) (18)
St = hlc G {19)

p

In ocder to caleouluate the locul heat-transfer coeliicient from Equation

(18), 't is necessary to calculate the adiab=iic-wall tecmperature T 0 For

. . . aw
this calculation Taw was found from
T - T
oz I (20)
ol m
In order io calculate the local heat-transfer coefficients from Equa-

tion (16), the adiabatic-wzll temperature can be calculated from the recovery
faciors for adiabatic tube flow given in reference {8). Since the original

data on which these recovery faciors ure based were also available in the
form of the rativ of cdiabatir-wall temperature to stagnation temperature,
these original data for a laminar boundary layer were plotted and then
averaged, An average value of (Taw/Toj) of 0.940 was used in this paper

in order tc reduce the time required for these ccrnputations.

Sample Calculaticn

A sample calculation of Run No. B-7 is given in Table 6. The calcu-
lations and equation numbers given in thc headings reler to the preceding
analy=:s. The values given in Tables 5 and 6 are based on calculations made
with five ur six significant figures throughoui.
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TEST COMBINATION D, BEFGRE ASSEMBLY
FIG. 7
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i TEST COMBINATION D, AFTER ASSEMBLY
FIG. 8




- i I
& | #

A [

MO VOWOWL ITMAN-—O
T MM~ @ —— ===
Lo T ] e
Nm_m._o._.\_o.:rq\ <X_.UQ\QH.ABQ\_V 4 homy
OlLvY 38NSSIHd FENLVHIJNGL

d513100W AYM TV OO

N ||

L.
i

s

2

3 456 810
LENGTH REYNOLDS NUMBER, Re, x1073

.2

o

( e _._mU > ) r.w| J
| I ﬂw.ulll |Im = Tl_LM A
a2 /7 A 4
_m | 3 sl el \\ % e
| on\.m g P a1
. | 30 EE- \%u » S|
| | | /! o
| \hwmm. _ o O \\ ,\m_, _,”_Jx
_ o r
| \q_ | 3 88 _.\ A m.m-
HGNB-- w (e mioi
 — -7 =
— gl , I3 s
|_ ._I. | M mm M lj_._m./ = —_ uw; %I;
_ . W o o I+|ﬁ,u H e IS _w o
—_ L e 9.
! - 8
| s 55 e
| ] gl 2] %5 23
m | z Z 3 =
' g1 0«4 |Ihw T
= o=
| 2 S |
| | 8 = g |
_ _ _ i ..b _
_ 11 1 o <"
“ . “ = |
| _ i ol ] i
@) Q (@ O 15 OO M~ © O <
O ] O 1y D) —-
< M 0P N o
¢ -~ |
(;44-44)/nig (v/b) L, X997y
HIGWNN
XN4 LV3IH 1vOo01 NOLINV.LS TTVvO07
TRESHETR T o] B R e WA B i D BB 12

9

o
w




™
ig]

il

\ _T"
] —T j.l;--
w 3 ||,|m =
11 | 1L
oo =T
i TOTTTT
7T T

407

(1oL o Y )

Ollvd
C314i30W

Ll
O OO N
NS IV

EP

FUNSSzYd INLTE3dNIL
IYM TIE001

T T
@]
I | _f
i - | .
Loy et e Ho
— A 7
- y.
i I - (0
i | Iovs "
i 25 ._wm |I~|!.I...[..| m ) = H.O i
IT L 's] Tg] m
[ E8 V\ | 51, =
B o G I
| I | (3]
L i @
e © T
4 & | o
& M&\nw\\\._n _ _..Ru
t - M
; | =
<.
-
=

i S
w
g W
O | N TN R ...--|-.|+1|.|HH B ..u.., w.m mw e
TR e B DU I 4 %)
————— = m ) e ———— ———— —— —— e + i _ “N
e, 2 N— SN R N m o™ H— _ﬂ 4 _F_ L w0 CvH_
AR S— H - 1 S S— w n_u& |“-.!4_.| T.- d_ .__ o SR _. x
—_ 1 | il e o lr.l = R.r\ﬂ /..II ) [ 4 T
N S SO Y | IR}V B S P
_ |15l |l FTavel |
| < i o - | |
wbion g ] .'vl I — ._l — A b e ———H o~
. m | 2|04 dia 28] !
/ _ S wh @ &l |
_ | _ oz %
[ : | i i | -0 | I
| ) | _ | 1 Iﬁl | i | H i 1] ==
O @) o O @) O O @) oo w M~ © Wn g O
®] o O n O 0 O O ==
w ie} g} < <t ) M o
dan,.
{45-44)/ 048 (/D) ,Ol X 9%0/¢
XN14 1v3H vl S38WNNN NOLNYLS Tv00T

e e



wi.l. T T T m— "
o - - -— i SR .
o

L S

‘]jom

LV aN M) 4
0ilvy 3=NSSIYd 3WNLVEISNIEL
Q140N v vo0

8
5 S, 2 S | ESERGCRe O i R O RO R i i L PSS | (o
e T T | O
] } S i Sl e I o i S R ) R S e
i c o i | |
4 o|8883 1— i T e s e s 3
| s]d000 |_ g £ S R 0 | e el - ———
[+ 4 .D.‘b. = o { ! 1 ]
e < T oD 1 i | KO - - e e b ] 1 o O
. | m | | AL =
gl .ze | S e s B A
=| 1 1 1 |
_ N Eman=) I S (8 | S A o} =
T & @
= W, w
o -.-U\.. ! e8]
Elooaowu .8 SE
o ° g J 2
|8 - e {e = &
- ZEoane ol o W = 3
- 9 - -—— e RS L o L >
> B S —t " A — L
I ] B —— 0 / EH D)
" .
= 5 AN 195
Lol ) o)
- i | S o 4
i 23 <0 -
- i .nI.Nﬁu...t..-.. — S Agiz 4 T
Bl A" feal| 5
: ‘nm.ﬂ.l..l...u\ﬂl\\: - - - .u|— P Y FN._
i & Z c o |
< Eee
o -3
| o
[=] o ) o o) @] C o o o (@) Ts] T Lt} o~
o T3] O 0 &) U (e 0 (@) el (@]
~ O o o) oS T ot M o o™
(,44-4u)/™8 (/D) LO1 %9 %/y
X4 Lv3H D07 HIFWNN NCINVLS Tvl0n
o i R e Lo W3l vl TR soi! B s L
’,

- T e e o 4 o e

Vi a

Fa—

—




34

o — e e

S| (e [ o | m.J
@
Q
6
or
¥ <
O » i
LA ] g
& £
X & R i |1
o ¥ n 